Type 1 Interpolation: Quartile Calculations

We interpolate to find the quartiles when given grouped data. We do not use midpoints like for mean and standard deviation, we must use the upper-class boundaries (UCB) and frequencies ($f f$) instead

Example 1

Age	Frequency
$0 \leq w<5$	5
$5 \leq w<20$	45
$20 \leq w<40$	90
$40 \leq w<65$	130
$65 \leq w<80$	60
$80 \leq w<90$	1

Way 1: Shorter Method

$$
\text { median }=\frac{n}{2}=\frac{331}{2}=165.5^{\text {th }} \text { value }
$$

See where 165.5 would insert in the cf column and drop down to next row

Age	Frequency	UCB	$\boldsymbol{c f}$ (running total)
$\mathbf{0 \leq w < 5}$	$\mathbf{5}$	$\mathbf{5}$	5
$5 \leq w<\mathbf{w} 0$	45	20	50
$20 \leq w<40$	90	40	140
$40 \leq w<65$	130	65	270
$65 \leq w<80$	60	80	330
$80 \leq w<90$	1	90	331

$$
\begin{aligned}
& \text { Apply the formula: LCB }+\frac{\text { how many in }}{\text { group total }} \times \text { class width } \\
& \qquad \begin{aligned}
40+\frac{165.5-140}{130} & \times(65-40)=44.9039 \\
= & 44.9
\end{aligned}
\end{aligned}
$$

Way 2: Longer Method

$$
\text { median }=\frac{n}{2}=\frac{331}{2}=165.5^{\text {th }} \text { value }
$$

See where 140.5 would insert in the cf column
Find where the corresponding x value would be in the UCB column and call it x

	Upper Class Boundary	cf
	5	5
	20	50
\boldsymbol{x}	40	140
	65	270
	80	330
	90	331

zoom in on the rows above and below of where we insert

40
x
65

We subtract the distances indicated above

$$
\begin{gathered}
\frac{x-40}{65-40}=\frac{165.5-140}{270-140} \\
\frac{x-40}{25}=\frac{25.5}{130} \\
x-40=25\left(\frac{25.5}{130}\right) \\
x-40=4.9038 \\
x=44.9
\end{gathered}
$$

Note: if you want the lower quartile, upper quartile or pth percentile do the exact same thing, but instead of $\frac{n}{2}$ use $\frac{n}{4}, \frac{3 n}{4},\left(\frac{p}{100}\right) n$

Example 2

Weight (kg)	Frequency
$1 \leq \boldsymbol{w}<3$	15
$3 \leq w<5$	31
$5 \leq w<6$	45
$6 \leq w<6.5$	37
$6.5 \leq w<7$	21
$7 \leq w<10$	15

Way 1: Shorter Method

$$
\frac{n}{2}=\frac{164}{2}=82^{\text {nd }} \text { value }
$$

See where 82 would insert in the cf column and drop down to next row

Weight (kg)	Frequency	UCB	$c f$
$1 \leq w<3$	15	3	15
$3 \leq w<5$	31	5	46
$5 \leq w<6$	45	6	91
$6 \leq w<6.5$	37	6.5	128
$6.5 \leq w<7$	21	7	149
$7 \leq w<10$	15	10	164

Apply the formula: $\mathrm{LCB}+\frac{\text { how many in }}{\text { group total }} \times$ class width

$$
5+\frac{82-46}{45} \times(6-5)=5.8
$$

Way 2: Longer Method

$$
\frac{n}{2}=\frac{164}{2}=82^{\text {nd }} \text { value }
$$

See where 82 would insert in the cf column
Find where the corresponding x value would be in the UCB column and call it x

	Upper Class Boundary	$c f$
	3	15
	5	46
	6	91
	6.5	128
\boldsymbol{x}	7	149
	10	164

zoom in on the rows above and below of where we insert
$\left(\begin{array}{r}5 \\ x \\ 6\end{array}\right.$
x
6

We subtract the distances indicated above

$$
\begin{gathered}
\frac{x-5}{6-5}=\frac{82-46}{91-46} \\
\frac{x-5}{1}=\frac{36}{45} \\
x-5=0.8 \\
x=5.8
\end{gathered}
$$

Note: if you want the lower quartile, upper quartile or pth percentile do the exact same thing, but instead of $\frac{n}{2}$ use $\frac{n}{4}, \frac{3 n}{4},\left(\frac{p}{100}\right) n$

Type 2 Interpolation: Splitting Up Rows

Example 1

The masses of 140 adult Bullmastiffs are recorded in a table. One dog is chosen at random.

Mass, $m(\mathrm{~kg})$	Frequency
$45 \leq m<48$	17
$48 \leq m<51$	25
$51 \leq m<54$	42
$54 \leq m<57$	33
$57 \leq m<60$	21
$60 \leq m<64$	2

i. Find the probability that the dog has a mass of 54 kg or more
ii. \quad Find the probability that the dog has a mass between $\mathbf{4 8} \mathbf{~ k g}$ and $\mathbf{5 7} \mathbf{~ k g}$

The probability that a Rottweiler chosen at random has a mass under 53 kg is 0.54 .
iii. Is it more or less likely that a Bullmastiff chosen at random has a mass under 53 kg ? State one assumption that you have made in making your decision
Ans.
i. $\quad p(m \geq 54)=\frac{33+21+2}{140}=\frac{56}{140}=0.4$
ii. $\quad p(48<x<57)=\frac{25+42+33}{140}=\frac{100}{140}=0.71$
iii. Here we need to interpolate.

We need to split the pink third row of the table up

Mass	f			
$45-48$	17			
$48-51$	25			
$51-54$	42	$\quad \Longrightarrow \quad$	$51-53$	$\frac{2}{3}(42)=28$
:---:	:---			
$53-54$	$\frac{1}{3}(42)=14$			

$P($ Bullmastiff Under 53$)=\frac{17+25+28}{140}=\frac{70}{140}=0.5$
$0.5<0.54$ so less likely

Note: we could have interpolated here using the method mentioned for the quartiles, but it is not necessary since we aren't finding an known in the mass column. We are just looking to split the frequencies up.

51	don't care	
53	don't care	x
54	don't care	

$$
\begin{gathered}
\frac{53-51}{54-51}=\frac{x}{42} \\
x=28
\end{gathered}
$$

Example 2

The table shows some information about the salaries of a sample of people
i. Work out the proportion of people in the sample who have a salary greater than $£ 40,000$
ii. Find an estimate for the median salary

Salary (p) in $£ 1000$ s	Frequency
$0<p \leq 10$	4
$10<p \leq 20$	9
$20<p \leq 25$	8
$25<p \leq 35$	10
$35<p \leq 50$	12

i.

Salary	f
$0<p \leq 10$	4
$10<p \leq 20$	9
$20<p \leq 25$	17
$25<p \leq 35$	25
$35<p \leq 50$	42

We need to split the last pink column of the table above table up
\Longrightarrow

$35-40$	$\frac{5}{15}(12)=4$
$40-50$	$\frac{10}{15}(12)=8$

$$
=\frac{8}{4+9+8+10+12}=\frac{8}{43}
$$

ii. This is type 1 interpolation, already covered.

Way 1: Shorter Method

Salary (p) in $£ 1000 \mathrm{~s}$	Frequency	Upper Bound	$c f$
$0<p \leq 10$	$\mathbf{4}$	$\mathbf{1 0}$	$\mathbf{4}$
$10<p \leq 20$	9	$\mathbf{2 0}$	$\mathbf{1 3}$
$20<p \leq 25$	8	$\mathbf{2 5}$	21
$25<p \leq 35$	10	$\mathbf{3 5}$	$\mathbf{3 1}$
$35<p \leq 50$	12	$\mathbf{5 0}$	$\mathbf{4 3}$

$$
\frac{43}{2}=21.5^{\text {th }} \text { value }
$$

Apply the formula:

$$
\mathrm{LCB}+\frac{\text { how many in }}{\text { group total }} \times \text { class width }
$$

$$
25+\frac{21.5-21}{10} \times(35-25)=5.8
$$

25.5
£25,500

Way 2: Longer Method

Salary (p) in $£ 1000 \mathrm{~s}$	Frequency	Upper Bound	$c f$
$0<p \leq 10$	4	$\mathbf{1 0}$	$\mathbf{4}$
$10<p \leq 20$	9	$\mathbf{2 0}$	$\mathbf{1 3}$
$20<p \leq 25$	8	$\mathbf{2 5}$	$\mathbf{2 1}$
$25<p \leq 35$	10	$\mathbf{3 5}$	$\mathbf{3 1}$
$35<p \leq 50$	12	$\mathbf{5 0}$	$\mathbf{4 3}$

$$
\frac{43}{2}=21.5^{t h} \text { value }
$$

Zoom in on the yellow

25	21
x	21.5
35	31

$\frac{x-25}{35-25}=\frac{21.5-21}{31-21}$

$$
\frac{x-25}{10}=\frac{0.5}{10}
$$

$$
x-25=0.5
$$

$$
x=25.5
$$

$$
£ 25,500
$$

Example 3 (with a gap)

The table shows the time, to the nearest minute, spend waiting for a taxi by each of 80 people one Sunday afternoon.

Waiting Time (in minutes)	Frequency
$2-4$	15
$5-6$	9
7	6
8	24
$9-10$	14
$11-15$	12

i. Estimate the number of people with a waiting time between 3.5 minutes and 7 minutes ii. Use linear interpolation to estimate the median, the lower quartile and the upper quartile of the waiting times
i.

We need to close the gaps between the boundaries first

Waiting Time (in minutes)	Waiting Time (in minutes)	Frequency
$2-4$	$1.5-4.5$	15
$5-6$	$4.5-6.5$	9
7	$6.5-7.5$	6
8	$7.5-8.5$	24
$9-10$	$8.5-10.5$	14
$11-15$	$10.5-15.5$	12

We need to split the first pink row and third blue row of the table up

Waiting Time f $1.5-4.5$ 15 $4.5-6.5$ 9 $6.5-7.5$ 6 $7.5-8.5$ 24 $8.5-10.5$ 14 $10.5-15.5$ 12\LongrightarrowSplitting the first pink row up gives $1.5-3.5$ $\frac{2}{3}(15)=10$ $3.5-4.5$ $\frac{1}{3}(15)=5$
Splitting the third blue row up gives

iii. This is type 1

Waiting time (minutes)	Frequency
$1.5-4.5$	15
$4.5-6.5$	9
$6.5-7.5$	6
$7.5-8.5$	24
$8.5-10.5$	14
$10.5-15.5$	12

We need to close the gaps first by turning the categories into bounds

\Longrightarrow| Waiting Time
 (minutes) | Frequency | Upper
 Bound | $c f$ |
| :---: | :---: | :---: | :---: |
| $1.5-4.5$ | 15 | $\mathbf{4 . 5}$ | $\mathbf{1 5}$ |
| | $4.5-6.5$ | 9 | $\mathbf{6 . 5}$ |
| $\mathbf{4} 54$ | | | |
| $6.5-7.5$ | 6 | $\mathbf{7 . 5}$ | $\mathbf{3 0}$ |
| $7.5-8.5$ | 24 | $\mathbf{8 . 5}$ | $\mathbf{5 4}$ |
| $8.5-10.5$ | 14 | $\mathbf{1 0 . 5}$ | $\mathbf{6 8}$ |
| $10.5-15.5$ | $\mathbf{1 2}$ | $\mathbf{1 5 . 5}$ | $\mathbf{8 0}$ |

Median$\frac{80}{2}=40^{t h} \text { value }$		Lower Quartile $\frac{80}{4}=20^{\text {th }}$ value		Upper Quartile$\frac{3(80)}{4}=60^{t h} \text { value }$	
Way 1 : Zoom in on	Way 2:	Way 1 : Zoom in on	Way 2:	Way 1 : Zoom in on	Way 2:
7.5 30	Apply the formula:	4.5 15 x	Apply the formula:	8.5 54	Apply the formula:
x		\boldsymbol{x} 20		\boldsymbol{x} 60	
8.5 54	LCB $+\frac{\text { how many in }}{\text { group total }} \times$ class width	6.5 24	LCB $+\frac{\text { group total }}{} \times$ class width	10.5 68	$\mathrm{LCB}+\frac{\text { how many in }}{\text { group total }} \times$ class width
$\frac{x-7.5}{8.5-7.5}=\frac{40-30}{54-30}$	$7.5+\frac{40-30}{24} \times(8.5-7.5)$	$\frac{x-4.5}{6.5-4.5}=\frac{20-15}{24-15}$	$4.5+\frac{20-15}{9} \times(6.5-4.5)$	$\frac{x-8.5}{10.5-8.5}=\frac{60-54}{68-54}$	$8.5+\frac{60-54}{14} \times(10.5-8.5)$
$\frac{x-7.5}{1}=\frac{10}{24}$	$=7.92$	$\frac{x-4.5}{2}=\frac{5}{9}$	$x=5.61$	$\frac{x-8.5}{2}=\frac{6}{14}$	$x=9.36$
$\begin{aligned} & x-7.5=\frac{5}{12} \\ & x=7.92 \end{aligned}$		$\begin{aligned} & x-4.5=\frac{10}{9} \\ & x=5.61 \end{aligned}$		$\begin{aligned} & x-8.5=\frac{6}{7} \\ & x=9.36 \end{aligned}$	

